COPYRIGHT RESERVED BCA(II) — COMP/2/XI/11

2011

Time: 3 hours

Full Marks: 80

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Answer from both the Groups as directed.

Group - A

(Objective Type Questions)

(Compulsory)

Answer all questions.

1. Choose the correct answer of the following:

 $2 \times 10 = 20$

- (a) An _____ is a finite set of instructions to accomplish a particular task.
 - (i) Array
 - (ii) Index
 - (iii) Algorithm
 - (iv) Flowchart

JX - 24/3

(Turn over)

(b)	In C, the array subscript begin with number
	(i) 1
	(ii) - 10
	(iii) 100
	(iv) 0
(c)	How a pointer is initialized ? (p-pointer, x –
	variable)
	(i) p = &x
	(ii) $p = {}^*x$
(g) In the	(iii) x = p
	(iv) $&p = x$
(d)	The stack element will be accessed by:
	(i) Index
	(ii) Front
	(iii) Top
	(iv) Rear
(e)	is a collection of data and links.
	(i) Node *
	(ii) List
JX – 24	/3 (2) Contd.

(iii) Queue (iv) Tree (f) The post-order traversal of a binary tree begins: (i) The post-order traversal of the left sub tree (ii) Processing of the root node (iii) The post-order traversal of the right sub tree (iv) None of these (g) In this search keys must be ordered: (i) Sequential search (ii) Hashing (iii) Binary Search (iv) None of these (h) A vertex with degree one in a graph is called: (i) Leaf (ii) Pendant vertex (iii) End vertex (iv) None of these JX – 24/3 (3) (Turn over)			
(f) The post-order traversal of a binary tree begins: (i) The post-order traversal of the left sub tree (ii) Processing of the root node (iii) The post-order traversal of the right sub tree (iv) None of these (g) In this search keys must be ordered: (i) Sequential search (ii) Hashing (iii) Binary Search (iv) None of these (h) A vertex with degree one in a graph is called: (i) Leaf (ii) Pendant vertex (iii) End vertex (iv) None of these		(iii)	i) Queue
begins: (i) The post-order traversal of the left sub tree (ii) Processing of the root node (iii) The post-order traversal of the right sub tree (iv) None of these (g) In this search keys must be ordered: (i) Sequential search (ii) Hashing (iii) Binary Search (iv) None of these (h) A vertex with degree one in a graph is called: (i) Leaf (ii) Pendant vertex (iii) End vertex (iv) None of these		(iv)	/) Tree
tree (ii) Processing of the root node (iii) The post-order traversal of the right sub tree (iv) None of these (g) In this search keys must be ordered: (i) Sequential search (ii) Hashing (iii) Binary Search (iv) None of these (h) A vertex with degree one in a graph is called: (i) Leaf (ii) Pendant vertex (iii) End vertex (iv) None of these	(f)		
(iii) The post-order traversal of the right sub tree (iv) None of these (g) In this search keys must be ordered: (i) Sequential search (ii) Hashing (iii) Binary Search (iv) None of these (h) A vertex with degree one in a graph is called: (i) Leaf (ii) Pendant vertex (iii) End vertex (iv) None of these		(i)	
tree (iv) None of these (g) In this search keys must be ordered: (i) Sequential search (ii) Hashing (iii) Binary Search (iv) None of these (h) A vertex with degree one in a graph is called: (i) Leaf (ii) Pendant vertex (iii) End vertex (iv) None of these		(ii)) Processing of the root node
(g) In this search keys must be ordered: (i) Sequential search (ii) Hashing (iii) Binary Search (iv) None of these (h) A vertex with degree one in a graph is called: (i) Leaf (ii) Pendant vertex (iii) End vertex (iv) None of these		(iii)	
(i) Sequential search (ii) Hashing (iii) Binary Search (iv) None of these (h) A vertex with degree one in a graph is called: (i) Leaf (ii) Pendant vertex (iii) End vertex (iv) None of these		(iv)	y) None of these
(i) Sequential search (ii) Hashing (iii) Binary Search (iv) None of these (h) A vertex with degree one in a graph is called: (i) Leaf (ii) Pendant vertex (iii) End vertex (iv) None of these	(g)	In ti	this search keys must be ordered:
(iii) Binary Search (iv) None of these (h) A vertex with degree one in a graph is called: (i) Leaf (ii) Pendant vertex (iii) End vertex (iv) None of these			
(iv) None of these (h) A vertex with degree one in a graph is called: (i) Leaf (ii) Pendant vertex (iii) End vertex (iv) None of these		(ii)) Hashing
(h) A vertex with degree one in a graph is called : (i) Leaf (ii) Pendant vertex (iii) End vertex (iv) None of these		(iii)	i) Binary Search
(i) Leaf (ii) Pendant vertex (iii) End vertex (iv) None of these		(iv)	None of these
(iii) End vertex (iv) None of these	(h)		
(iv) None of these		(ii)	Pendant vertex
NV - 0.440		(iii)) End vertex
JX – 24/3 (3) (Turn over)		(iv)) None of these
	JX – 24	/3	(3) (Turn over)
			· / · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·

- (i) Which method of traversal does not use stack to hold nodes?
 (i) Breadth first
 (ii) Depth first
 (iii) D-Search
 (iv) None of these
 (j) What is EOF?
 (i) End of a field
 - (iii) Error in output
 - (iv) None of these

(ii) End of file

Group - B

(Long-answer Type Questions)

Answer any four questions:

 $15 \times 4 = 60$

- 2. Write and explain quick sort method. Give an example.
- 3. What is Binary Tree? Write a program to create a tree and display in-order traversal.
- 4. Describe representation of arrays using row major and column major order.

JX - 24/3

(4)

Contd.

- What is a circular linked list? Compare it with doubly linked list through algorithm.
- Describe any one graph representation method. How does the minimum cost spanning tree be obtained?
- 7. What do you mean by AVL tree ? How an AVL tree is different from a binary search tree?
- 8. Write a "C" program to implement the PUSH and POP operations in a stack.
- 9. Translate the following infix expression into postfix expression:

(a)
$$((A + B) * D) \uparrow (E - F)$$

(b)
$$A + (((B - C) * (D - E) + F) / G) \uparrow (H - J)$$

