COPYRIGHT RESERVED Comp/II/07/09 - VII

2008-09

Time: 3 hours

Full Marks: 80

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Answer from both the Groups as directed.

Group – A (Compulsory)

Answer all questions:

 $2 \times 10 = 20$

- 1. Select the correct answer of the following:
 - (a) The number of flip flops required in a decade counter is :
 - (i) 4
- (ii) 5
- (iii) 6
- (iv) 8
- (b) Find the Boolean function of xz + xyz algebraically:
 - (i) z(x + y)
- (ii) y(x + z)
- (iii) x(y + z)
- (iv) z

EL - 11/1

(Turn over)

	(c)	What is the form of the Boolean expressions of AB + BC ?						
		(i)	Product-c	of-sums	s (ii)	Sum-of-produ	ucts	
		(iii)	K-map		(iv)	Matrix		
	(d)	Half subtractor is also known as:						
		(i)	OR gate		(ii)	EX-OR gate		
		(iii)	AND gate	9	(iv)	NAND gate		
	(e)	A demultiplexer is also known as :						
		(i)	Encoder	Z La iu	(ii)	Multiplexer		
		(iii)	Decoder		(iv)	Data selecto	r	
	(f)	Wh	at is the la	argest	numb	er of data inp	uts	
		whi	ch a data s	selector	with	two control inp	outs	
		can	have?	,				
		(i)	2		(ii)	4		
		(iii)	8		(iv)	16		
	(g)	The	Binary su	btracto	r (0 –	1) equals :		
		(i)	0 with bor	row	(ii)	1 with no borr	OW	
		(iii)	0 with no	borrow	(iv)	1 with borrow	,	
	(h)		ich memoi en only on	-	n-vol	atile and may	be	
		(i)	RAM	*	(ii)	EPROM		
		(iii)	PROM	1. 41.8	(iv)	EE-ROM		
* . A.			2 9/2 / 21					
EL-	- 11/	1		(2)		Cor	ntd.	
				£ - 1				
							33	

(i)) An S-R flip-flop cannot accept the follow									
	inpu	ut entry:								
	(i)	Both inputs zero								
	(ii)	Zero at R and one at S								
	(iii)	One at R and zero at S								
	(iv)	Both inputs one								
(j)	A simple flip-flop:									
	(i)	Both inputs zero								
	(ii)	Zero at R and one at S								
	(iii)	Zero at S and one at R								
	(iv)	Both inputs one								
Group – B										
		Answer any four questions.								
Mir	nimiz	ze the following functions and real	ize							
usir	ng m	inimum number of gates :	15							
(a)	F1	$= \Sigma m(3, 7, 11, 15)$								
(b)	F2	$= \Sigma M(0, 5, 6, 7, 10, 11)$								
Wh	at is	Register ? Explain 4-bit shift register.	15							

4. What is RAM? Design a circuit for RAM. 15

(3) (Turn over)

2.

3.

EL - 11/1

5.	Explain	the	following:	

15

- (a) DMA
- (b) Half Adder
- (c) Flip-flop
- (d) Flash Memory
- 6. What is synchronous and asynchronous counter? What is Virtual memory?15
- 7. What is the purpose of the main memory in a computer? What is non-volatile memory? 15
- 8. Explain the different types of memory used in computer.15
- 9. What is control memory? What is hardwired control unit? Explain RISC and SISC.15
- Describe the operation of NAND, NOR, EX-OR and EX-NOR with truth table and its symbols.

EL – 11/1 (400) (4) Comp/II/07/09 — VII